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a b s t r a c t

Mathematical models based on chemometric analyses of the coffee beverage sensory data and NIR spec-
tra of 51 Arabica roasted coffee samples were generated aiming to predict the scores of acidity, bitterness,
flavour, cleanliness, body and overall quality of coffee beverage. Partial least squares (PLS) were used to
construct the models. The ordered predictor selection (OPS) algorithm was applied to select the wave-
lengths for the regression model of each sensory attribute in order to take only significant regions into
eywords:
hemometrics
ear infrared diffuse reflectance
artial least squares
rabica coffee
ensory analysis

account. The regions of the spectrum defined as important for sensory quality were closely related to the
NIR spectra of pure caffeine, trigonelline, 5-caffeoylquinic acid, cellulose, coffee lipids, sucrose and casein.
The NIR analyses sustained that the relationship between the sensory characteristics of the beverage and
the chemical composition of the roasted grain were as listed below: 1 – the lipids and proteins were
closely related to the attribute body; 2 – the caffeine and chlorogenic acids were related to bitterness; 3
– the chlorogenic acids were related to acidity and flavour; 4 – the cleanliness and overall quality were

elline
related to caffeine, trigon

. Introduction

Nowadays, the term “quality” is one of the most widespread
eywords used in commercial trade. Nevertheless, product qual-
ty can assume different meanings for consumers, producers and
egulating organizations. In the case of coffee, quality may result
rom factors like the production system; the aspect and chemical
omposition of the green or roasted beans and to the final beverage
haracteristics.

The quality of coffee as a beverage is strictly related to the
hemical constituents of the roasted beans, whose composition
epends on the composition of green beans (i.e., un-roasted). Un-
oasted coffee beans contain a wide range of different chemical
ompounds, which react and interact amongst themselves at all
tages of coffee roasting, resulting in even more diverse final prod-
cts.

Despite the reliability of the cupping method for the evalua-
ion of beverage quality for commercial purposes, the research

or more objective, simpler and faster analytical methods is of
cientific interest [1–3], since that could be used easily and repro-
uctively in the routine coffee beverage analyses. The impact
f chemical components of coffee, e.g., chlorogenic acids, carbo-

∗ Corresponding author. Tel.: +55 19 3202 1717; fax: +55 19 3202 1721.
E-mail address: tsalva@iac.sp.gov.br (T.J.G. Salva).

039-9140/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.talanta.2010.11.001
, chlorogenic acid, polysaccharides, sucrose and protein.
© 2010 Elsevier B.V. All rights reserved.

hydrates, proteins, trigonelline and caffeine on the final quality
of the beverage has already been established in the literature
[1–3].

Near infrared spectroscopic (NIRS) is a widespread methodol-
ogy for qualitative and quantitative analyses in the chemical [4–6],
pharmaceutical [7,8] and food industries [9–14].

Several studies have also been carried out on the application
of NIRS in coffee analyses. NIRS has been applied to discriminate
between the species Coffea arabica and Coffea canephora, either
in pure or blended samples [15–17], to quantify caffeine [13],
trigonelline, chlorogenic acid [18,19], total sugar [20] and minerals
[21] and to define the roasting degree of coffee beans [22]. More-
over, NIR spectroscopy has also been used to evaluate the quality of
espresso beverages. To this end, Esteban-Diez et al. [23] constructed
PLS models for the prediction of acidity, body, aftertaste and bitter-
ness from spectra of Arabica and Robusta species. Some important
wavelengths related to sensory attributes were highlighted in this
study [23]. However, an external validation to evaluate the pro-
posed models was not performed.

The goal of this study was to develop mathematical predictive
models for an objective and reproducible sensory quality analyses

of coffee. To this end, chemometric tools for the exploitation of
the near infrared spectra of roasted Arabica coffee were applied.
Moreover, using the NIR spectra analyses, it was tried to establish
a relationship between the sensory attributes of the beverage and
the chemical components of the coffee beans.
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Table 1
Scale used for the sensory evaluation of Arabica coffee samples.

Score Acidity Bitterness Flavour Cleanliness Body Overall quality

1 Very low desirability or very highly undesirable Very strong Very low desirability or
very highly undesirable

Rio Weak Very bad

1.5 – – Rio/Rioysh – Very bad/bad
2 Low desirability or less undesirable Strong/regular Low desirability or less

undesirable
Rioysh Weak/regular Bad

2.5 – – Low/regular Hard− – Bad/regular
3 Desirable Regular Regular Hard Regular Regular
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3.5 – –
4 Highly desirable Regular/normal
4.5 – –
5 Very highly desirable Normal

. Materials and methods

.1. Reagents

In order to compare and identify wavelengths possibly related
o important compounds normally presents in coffee beans, spectra
f pure caffeine (minimum 99% purity), trigonelline (99%), sucrose
99.5%), 5-CGA (5-caffeoylquinic acid) (95%), protein (casein 90%)
nd carbohydrate (cellulose high purity) were performed. These
eagents were supplied by Sigma–Aldrich (Munich). The lipid frac-
ion was extracted from crude coffee beans by mechanical pressing
24].

.2. Coffee samples

Fifty-one green Arabica coffee samples with different beverage
haracteristics were roasted separately in a gas fired drum roaster
Pinhalense S/A Máquinas Agrícolas, Brazil) to the medium roast
oint (Agtron # 55 – according to SCAA’s roast color classification
ystem). The roasted coffee samples were packed in special plastic
lms (polystyrene and polyethylene) and aluminium foil, to avoid
loss of aroma and a contamination from external substances. The

amples were stored at −5 ◦C for a maximum of 3 h before being
round in a mortar and analyzed.

.3. Sensory analysis

All the 51 samples were submitted to a sensory evaluation by
ve experts using 10 g of roasted and ground coffee in 100 mL of
ot water [25]. The cup quality was assessed according to acidity,
itterness, flavour, cleanliness (clean cup), body (mouthfeel) and
verall quality. The quality and intensity of each attribute were
valuated simultaneously by using a scale varying from 1 to 5
Table 1). For each attribute an assignment of one point was con-
idered very low quality (in terms of a more intense perception in
he case of an undesirable sensation or less intense perception if it
as a desirable sensation). When analyzing acidity, an assignment

f one point may refer to an either low, or too high and undesirable
cidity. On the other hand, when evaluating bitterness, a score of
ne point refers to a beverage bitterer than one with five points. In
his case, five points would be assigned to a coffee with normal and
esirable bitterness.

.4. NIR spectra acquisition

Diffuse reflectance spectra of roasted and ground coffee and of
rigonelline, caffeine, lipids, cellulose, casein, 5-CGA and sucrose,

ere obtained using a near-infrared NIRSystems 6500 spectropho-

ometer (Foss NIRSystems, Raamsdonksveer, The Netherlands)
quipped with a reflectance detector and sample transport module.
ach spectrum was profiled with 256 scans in the 1100–2500 nm
ange and a resolution of 4 nm. In this work, three different aliquots
egular/good Hard+ – Regular/good
ood Softish Regular/strong Good
ood/excellent Soft – Good/excellent
xcellent Strictly soft Strong Excellent

of the sample were used and the spectrum of each aliquot was
recorded.

2.5. Chemometric data treatment

The original spectroscopic profiles were organized into a matrix
format X (I × J), where each replicate was considered as one sam-
ple. Data analysis was carried out using Matlab 6.5 software (The
MathWorks, Co., Natick, MA, USA) with the PLS Toolbox compu-
tational package (Eigenvector Research, Inc. –PLS Toolbox version
3.02.) [26].

In the present study, two pre-treatments were applied to the
original data matrix: Savitzky–Golay smoothing with a window
size of 5 points and first derivative [27]. The algorithm ordered
predictor selection (OPS) was used for variable selection [28],
according to the following sequence:

• Step 1 – Selection of an informative vector that contains infor-
mation about the location of the best independent variables for
prediction;

• Step 2 – Differentiation of the original variables according to the
corresponding values of the informative vector selected in step
1;

• Step 3 – Sorting variables in decreasing order of magnitude;
• Step 4 – Building and evaluating the multivariate regression mod-

els through a cross validation strategy.

The partial least square regression (PLSR) was the method used
for modelling. More information on the regression method can be
found in Ferreira et al. [29] and Ribeiro et al. [30].

3. Results and discussion

The original spectra of the coffee samples were organized into
a format × matrix (153 × 700). The original (A) and pre-treated (B)
spectra (Xp) are depicted in Fig. 1.

The average values of sensory scores assigned by the experts for
each attribute were used as the dependent variables (y) and the
pre-treated spectra (matrix Xp) of the coffee samples were used as
the independent variables to develop the regression model.

The data set was split as follows: 41 samples (123 spectra) were
randomly selected to be the calibration set, and the remaining 10
samples, corresponding to 30 spectra, were used for external val-
idation. Leave five out cross-validation was performed to select
the number of components in the models. In this case, the three
replicates of five samples were left out at a time.
From the initial 700 variables (NIR spectrum) the OPS algorithm
selected: 76 (18 regions) to build the acidity model (A), 116 (23
regions) for bitterness (B), 118 (29 regions) for flavour (C), 99 (20
regions) for cleanliness (D), 143 (29 regions) for body (E) and 85
(22 regions) for overall quality (F).
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Table 2
Regions selected by OPS for construction of the regression models.

Region
selected

General region
ranges (nm)

Wavelength ranges selected for
each model (nm)

Vibrational modes Charts

1 1208–1236a,b,d,e,f 1208–1222,a 1214–1220,b 1218–1232,d

1218–1236,e 1218–1236f
2nd overtone of C–H CH CH2

2 1230–1238b – 2nd overtone of C–H CH
3 1340–1344a – 1st overtone of C–H combination bands CH3

4 1352–1358d – 1st overtone of C–H combination bands CH3

5 1362–1366b – 1st overtone of C–H combination bands CH3

6 1396–1398f – 1st overtone of O–H ArOH CH2 CH3
7 1412–1444b,c,d,e,f 1416–1418,b 1412–1418,c 1426–1438,c

1412–1444,d 1420–1422,e 1432–1444,e

1412–1418,f 1430–1412,f 1438–1442f

1st overtone of O–H and N–H ArOH CH CH2 H2O ROH CONH2

8 1472–1476d,e,f 1472–1476,d 1474–1476,e 1472–1476f 1st overtone of N–H ROH CONH2 CONHR
9 1506–1508a – 1st overtone of N–H RNH2

10 1520–1528e – 1st overtone of N–H RNH2

11 1528–1530c – 1st overtone of N–H RNH2

12 1532–1536a – 1st overtone of N–H RNH2

13 1552–1556a,b 1554–1556,a 1552–1556b 1st overtone region –
14 1590–1594a,e 1590–1592,a 1592–1594e 1st overtone region –
15 1614–1618b – 1st overtone of C–H ArCH
16 1634–1646b,c 1640–1644,b 1634–1646c 1st overtone of C–H ArCH CH3

17 1658–1662b – 1st overtone of C–H CH3

18 1678–1686c,d,e,f 1682–1684,c 1678–1686,d 1670–1686,e

1680–1686f
1st overtone of C–H CH2 CH3

19 1700–1704c – 1st overtone of C–H CH CH2 CH3

20 1704–1720c,e,f 1710–1720,c 1704–1708,e 1706–1708f 1st overtone of C–H CH CH2 CH3

21 1728–1732c,e 1728–1732,c 1728–1730e 1st overtone of C–H CH CH2

22 1738–1740c – 1st overtone of C–H and S–H CH CH2 SH
23 1780–1790a – 1st overtone of C–H CH
24 1908–1912b – 2nd overtone of C O stretching H2O POH RCO2H
25 1934–1636b – 2nd overtone of C O stretching H2O POH CONH2 RCO2R′

26 1938–1940d – 2nd overtone of C O stretching H2O RCO2R′ CONH2

27 1944–1982c,d,e 1956–1958,c 1968–1970,c 1978–1982,c

1948–1950,d 1944–1982e
2nd overtone of C O stretching H2O RCO2R′ CONH2

28 1988–1992a – 1st overtone of C O and O–H combination bands –
29 1998–2002a – 1st overtone of C O and O–H combination bands –
30 2020–2022a – 1st overtone of C O and O–H combination bands –
31 2028–2034c – 1st overtone of C O and O–H combination bands –
32 2040–2082a,c,d,e,f 2066–2074,a 2040–2046,c 2054–2056,c

2040–2056,d 2062–2064,d 2040–2056,e

2042–2082f

1st overtone of C O and O–H combination bands CO

33 2088–2118b,e 2088–2118,b 2092–2094e 1st overtone of C O and O–H combination bands ROH CONH2(R) CO
34 2126–2132c,f 2126–2132,c 2128–2132f N–H combination bands CONH2(R)
35 2138–2140e – N–H combination bands CONH2(R)
36 2150–2154c,e 2150–2152,c 2150–2154e N–H combination bands RNH2

37 2180–2182c – N–H combination bands RNH2 CC
38 2190–2192b,d,f – 1st overtone of O–H RNH2 CC CHO
39 2196–2198e – N–H and O–H combination bands ArOH CH2 CH3

40 2200–2238a,b,c,d,e,f 2226–2228,a 2200–2214,b 2222–2238,b

2210–2234,c 2202–2216,d 2224–2232,d

2206–2216,e 2202–2216,f 2224–2232f

N–H and O–H combination bands RNH2 CC CHO

41 2238–2244e – N–H and O–H combination bands RNH2 CHO CH3

42 2246–2270a,b,c,d,e,f 2248–2254,a 2248–2272,b 2248–2250,c

2258–2266,c 2246–2270,d 2250–2258,e

2266–2268,e 2248–2254,f 2260–2264f

N–H and O–H combination bands H2O CH3

43 2274–2298a,b,c,d,e,f 2276–2284,a 2290–2296,a 2280–2286,b

2292–2298,b 2274–2276,c 2288–2294,c

2290–2296,d 2278–2294,e 2280–2282,f

2290–2296f

C–H + C–H combination bands H2O CH2 CH3

44 2300–2316b,d,e,f 2310–2312,b 2306–2312,d 2300–2312,e

2310–2312f
C–H + CC combination bands CH CH2 CH3

45 2324–2334b,c,d,e,f 2324–2334,b 2324–2334,c 2326–2334,d

2324–2326,e 2326–2332f
C–H + C–H combination bands CH CH2 CH3

46 2342–2352e – C–H + CC combination bands CH CH2 CH3

47 2358–2394a,e 2362–2394,a 2358–2368,b 2374,e 2388e C–H + C–H combination bands CH CH2 CH3

48 2400–2402c,e 2400–2402,c 2400e C–H + C–H combination bands CH CH2 CH3

49 2410–2416c – C–H + C–H combination bands CH CH2

50 2424–2428b,c,e 2424–2428,b 2426–2428,c 2424–2426e C–H + C–H combination bands CH CH2

51 2440–2456a,b,c,d,e,f 2448–2452,a 2440–2452,b 2452–2456,c

2442–2444,d 2440–2454,e 2442–2444f
C–H + C–H combination bands CH

52 2464–2490a,c,d,e,f 2474–2478,a 2460–2490,c 2480–2488,d

2464–2476,e 2480–2488f
C–H + CC combination bands –

a Acidity.
b Bitterness.
c Flavour.
d Cleanliness.
e Body.
f Overall quality.
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e reflectance spectra of the roasted coffee samples.
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Table 3
Latent variable numbers, RMSECV and rcv for the PLS models.

Model N◦ LVa RMSECVb rcv
c

Acidity 8 0.28 ± 0.02 0.84 ± 0.01
Bitterness 8 0.35 ± 0.01 0.87 ± 0.01
Flavour 7 0.31 ± 0.01 0.93 ± 0.00
Cleanliness 8 0.38 ± 0.01 0.91 ± 0.01
Body 9 0.27 ± 0.01 0.88 ± 0.01
Overall quality 8 0.39 ± 0.01 0.91 ± 0.00

T
M

Fig. 1. Original (A) and pre-treated (B) diffus

Table 2 shows the regions defined by the variables selected for
he six calibration models as well as the corresponding vibrational

odes and charts. Taking into account the first row of this table,
n the region named one, the variables ranging from 1208 to 1222

ere selected for the calibration model of the beverage acidity (A)
nd they are related to the 2nd overtone of the CH or CH2 charts.

The number of latent variables used in the PLS models was
etermined from the root mean square error of cross validation

RMSECV) values. The number of latent variables selected for each
ensory attribute and the respective statistical parameters RMSECV
nd rcv is shown in Table 3.

Using the number of latent variables (Table 3) for all the cali-
ration models, in general it was possible to describe 99% and 86%

able 4
easured values by the experts and predicted values from the regression models.

Acidity Bitterness

Sample Measured Predicted Measured

1 3.00 ± 0.06 2.56 ± 0.08 4.13 ± 0.63
2 3.70 ± 0.02 3.35 ± 0.05 4.38 ± 0.75
3 3.69 ± 0.06 3.54 ± 0.11 4.13 ± 0.63
4 3.38 ± 0.03 3.10 ± 0.02 4.13 ± 0.63
5 2.56 ± 0.05 3.01 ± 0.05 2.69 ± 0.63
6 2.19 ± 0.03 2.38 ± 0.05 3.25 ± 0.50
7 2.91 ± 0.06 2.85 ± 0.02 3.50 ± 0.50
8 3.00 ± 0.04 2.53 ± 0.05 3.50 ± 0.63
9 3.7 ± 0.02 3.68 ± 0,04 4.00 ± 0.75
10 3.00 ± 0.04 2.99 ± 0.08 4.00 ± 0.63

Cleanliness Body

Sample Measured Predicted Measured

1 3.83 ± 0.29 3.51 ± 0.07 3.33 ± 0.58
2 4.31 ± 0.38 3.82 ± 0.07 3.44 ± 0.38
3 3.63 ± 0.48 3.52 ± 0.07 3.66 ± 0.58
4 3.88 ± 0.14 3.47 ± 0.05 2.69 ± 0.31
5 1.50 ± 0.20 1.83 ± 0.06 1.94 ± 0.24
6 2.38 ± 0.43 2.54 ± 0.02 2.38 ± 0.43
7 3.75 ± 0.29 3.88 ± 0.21 3.50 ± 0.48
8 4.00 ± 0.31 3.77 ± 0.05 3.50 ± 0.25
9 4.50 ± 0.24 4.25 ± 0.12 4.00 ± 0.50
10 4.50 ± 0.41 4.35 ± 0.07 4.00 ± 0.41
a Number of latent variables.
b Root mean square error of cross validation.
c Cross validation correlation coefficient.

Flavour

Predicted Measured Predicted

3.65 ± 0.22 2.75 ± 0.29 2.70 ± 0.09
4.40 ± 0.06 4.19 ± 0.52 4.16 ± 0.06
4.12 ± 0.11 3.63 ± 0.48 3.39 ± 0.05
4.15 ± 0.08 3.75 ± 0.29 3.84 ± 0.12
3.36 ± 0.08 2.25 ± 0.00 2.78 ± 0.01
3.31 ± 0.03 2.63 ± 0.48 2.75 ± 0.07
3.46 ± 0.20 4.50 ± 0.48 4.24 ± 0.10
3.42 ± 0.15 4.00 ± 0.21 4.08 ± 0.02
3.71 ± 0.10 4.50 ± 0.52 4.17 ± 0.10
3.28 ± 0.18 4.50 ± 0.65 4.34 ± 0.13

Overall quality

Predicted Measured Predicted

3.15 ± 0.19 3.38 ± 0.48 2.93 ± 0.08
3.29 ± 0.15 4.38 ± 0.25 3.96 ± 0.04
3.33 ± 0.16 4.13 ± 0.25 3.99 ± 0.05
2.71 ± 0.10 4.00 ± 0.00 3.54 ± 0.12
2.52 ± 0.01 1.50 ± 0.20 2.31 ± 0.09
2.50 ± 0.02 2.19 ± 0.13 2.45 ± 0.04
3.50 ± 0.33 3.50 ± 0.41 3.94 ± 0.04
3.35 ± 0.06 4.00 ± 0.25 3.80 ± 0.07
3.61 ± 0.07 4.50 ± 0.25 4.17 ± 0.08
3.82 ± 0.18 4.50 ± 0.50 4.35 ± 0.18
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f the variance used in blocks Y and X, respectively. The models
ere validated by the external data set (10 samples). Fig. 2 shows
he experimental values for each sensory attribute vs. the respec-
ive values estimated from cross validation. The predicted values
or the external validation samples were also included in this fig-
re to show that they are in the same range as the other samples.

ig. 2. Plots of measured vs. predicted values for the calibration (©) and prediction (�) set
F).
3 (2011) 1352–1358

The values supplied by the experts compared to the predicted by
the PLS models for the 10 samples used in the external validation

step are shown in Table 4. The RMSEP (root mean square error
of prediction) values were 0.30 acidity, 0.37 for bitterness, 0.25
for flavour, 0.37 for cleanliness, 0.30 for body and 0.42 for overall
quality.

s. Acidity (A), bitterness (B), flavour (C), cleanliness (D), body (E) and overall quality
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Fig. 3. Spectra of pure compounds present in coffee beans.

A total of 135 wavelength ranges used to construct the six PLS
rediction models for the sensory attributes studied are listed at
able 2. Some of these ranges either were selected for more than
ne sensory attribute or was inside the wavelength range important
f other attribute. Thus, these 135 wavelength ranges were grouped
n 52 regions (second column of Table 2). Moreover, these regions
isted in Table 2 were compared to the pure spectra of the most
elevant compounds present in coffee (Fig. 3).

Using the information of the NIR spectra indicated in Fig. 3, the
avelength ranges, in which occurred the greatest absorbance of
ure compounds, were shown in Fig. 4.

Some researchers have indicated that the acidity of coffee is due
o the phosphoric acid, chlorogenic acids, quinic acid and aliphatic
rganic acids present in roasted coffee [31,32]. Looking at the 18
egions selected by OPS for the attribute acidity, it can be seen that
of them are related to aliphatic and chlorogenic acid structures

Table 2). Thus regions 28, 29, 30 and 32 (related to the absorbance
f the 1st overtone of C O and O–H combination bands) and region
3 (1st overtone of C–H) could have originated from organic acids.

ince pure aliphatic acids were not analyzed by NIR in this study,
nly region 32 showed the relationship between acidity and chloro-
enic acid, as shown in Fig. 4. The relationship between beverage
cidity and chlorogenic acids is sustained by regions 42, 43 and 47,
here the values for absorbance are relative to the O–H and CH + CH

Fig. 4. Schematic representation of the absorption re
3 (2011) 1352–1358 1357

combination bands, according to the analyses of pure compounds
(Fig. 4).

According to Esteban-Díez et al. [23], the influence of chloro-
genic acids could be justified by taking into account their possible
decomposition during roasting, and the influence of the resulting
decomposition products on the relative amounts of many groups
of compounds, with sensory implications on acidity. One of the
wavelengths used for the acidity model by these authors was also
selected by OPS (1212 nm). Coincident wavelengths were also iden-
tified in the models built for bitterness (2096 nm) and body (1968,
1972, 1978 and 2142 nm).

Beverage bitterness is highly related to the roasting degree and
arises from caffeine, some heterocyclic and peptide compounds,
chlorogenic acids and sugar degradation products [31,32].

Fifteen of the 23 regions selected by the OPS algorithm for the
bitterness model (Fig. 4), could be related to chlorogenic acids
and caffeine, as follows: region 7 (1st overtone of O–H and N–H),
regions 13, 15–17 (1st overtone of C–H), 24, 25 (1st overtone of
C O stretch), 33 (1st overtone of C O and O–H combination bands),
38 (1st overtone of O–H), 42 (N–H and O–H combination bands),
43–45, 50 and 51 (C–H + C–H combination bands). Thus, the vari-
able selection performed by the OPS algorithm also denoted the
importance of caffeine and the chlorogenic acids in the composition
of beverage bitterness.

Of the 29 regions selected by the OPS algorithm for the model of
the attribute body (Table 2), fifteen (7, 20, 21, 32, 35, 36, 39, 44–48
and 50–52) could be attributed to lipid absorbance, as shown in
Fig. 4. However, 10 were coincided with chlorogenic acids and 8
with the absorbance of protein molecules. Thus, the evidence of
the relationship between the lipid content and beverage body was
shown. However, these data clearly indicated that the beverage
body could also be related to the protein and chlorogenic acid con-
tent. According to Illy and Viani [33] the body of espresso coffee is
closely related to emulsified lipids and proteins, justifying the con-
tribution of some bands assigned to these classes of compounds.
Esteban-Díez et al. [23] suggested that the protein content was
related to the viscosity, which, in turn, could be related to the body
of the coffee.

Flavour is the olphatic perception caused by free gases from the
roasted and warm coffee, after preparation of the infusion. Clean-
liness is related to the “transparence” of the cup. In a “dirty” cup,
all the sensory attributes, except the chemical taste, are masked.

In the overall quality evaluation, flavour, taste, bitterness, balance,
body and harmony are simultaneously considered [34].

Thus the overall quality is highly dependent on all the sensory
attributes that were studied here, especially flavour, cleanliness
(high correlation) and body (slightly less correlation). Therefore,

gions of the main components found in coffee.
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t is expected that coffee with good flavour and high cleanliness
ill also have high overall quality.

A total of nine spectral regions selected by the OPS algorithm (7,
8, 32, 40, 42, 43, 45, 51 and 52) were shown to be important for
he attributes of flavour, cleanliness and overall quality. Another
ix were important for overall quality and flavour or for cleanliness
1, 8, 20, 34, 38 and 44).

The regions 7 (1412–1444 nm), 32 (2040–2082 nm), 42
2246–2270 nm), 43 (2274–2298 nm) and 45 (2324–2334 nm),
or example, were important for almost all the compounds,
s indicated in Fig. 4. Several other regions were more spe-
ific for some classes of compounds: regions 1 (1218–1242 nm)
nd 44 (2306–2312 nm) for sucrose and other carbohydrates;
egion 8 (1472–1478 nm) for chlorogenic acids and phenols;
egions 34 (2128–2132 nm) and 38 (2190–2192 nm) for proteins
nd/or chlorogenic acids; and regions 20 (1706–1714 nm), 51
2436–2475 nm) and 52 (2480–2488 nm) for lipids. Since the over-
ll quality is a synthesis of the attributes involved in the coffee
everage evaluation, mainly flavour and cleanliness, it is expected
hat the spectral regions of all the compounds would be relevant to
he construction of the three regression models.

. Conclusions

The present study indicates that it is possible to estimate the
uality of coffee using PLS regression models obtained by using
IR spectra of roasted Arabica coffees. Parameters predicted were

ensory scores for flavour, acidity, bitterness, body, cleanliness and
verall quality. Variable selection by using OPS algorithm was a
rimary step to determine the best spectral regions describing each
ensory attribute studied.

The values for RMSECV, rcv and RMSEP computed by the models
stablished using 7–9 latent variables, were 0.28 ± 0.02, 0.84 ± 0.01
nd 0.30, 0.35 ± 0.01, 0.87 ± 0.01 and 0.37, 0.31 ± 0.01, 0.93 ± 0.00
nd 0.25, 0.38 ± 0.01, 0.91 ± 0.01 and 0.37, 0.27 ± 0.01, 0.88 ± 0.01
nd 0.30, 0.39 ± 0.01, 0.91 ± 0.00 and 0.37 for acidity, bitterness,
avour, cleanliness, body and overall quality, respectively.

The considerable stability of the models allowed for the estab-
ishment of a correlation between the spectral regions selected and
he spectra of the pure compounds. Thus the lipids and proteins in
he roasted bean were closely related to the attribute of body in the

offee beverage, caffeine and chlorogenic acids to bitterness and
hlorogenic acid to acidity, and the flavour, cleanliness and overall
uality were related to the caffeine, trigonelline, chlorogenic acid,
olysaccharides, sucrose and protein present in the roasted coffee
eans.
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